Surface Reconstruction from Fitted Shape Primitives

Philipp Jenke, Bastian Krückeberg, Wolfgang Straßer

WSI/GRIS, University of Tuebingen, Germany

October 8th, 2008
Motivation

• Shape detection in point clouds
 – planes, spheres and cylinders

From Shape Detection to Reconstruction

• Limitations of [SWK07]
 – no explicit access to surface
 – no boundaries

• Idea
 – extract primitives via RANSAC
 – extract and reconstruct boundaries on primitives
 – triangulate interior

Reconstruction Pipeline

- Data preprocessing
- RANSAC primitive detection
- Border candidates
- Border loops
- Optimization
- Meshing
Preprocessing I

• Sampling = \(\varepsilon \)-influence required to recognize surface
 – point spacing, anisotropy
 – noise

• Idea
 – iterative growing
 – PCA-analysis
 • \(\lambda_0 \ll \lambda_1, \lambda_2 \)
 • \(e_0^{i+1} \approx e_0^i \)
Preprocessing II

data sampling spacing noise std. deviation

data sampling spacing

smaller larger
RANSAC Primitive Detection

- **RAN**dom **SA**mple **C**onsensus
 - choose random sample set
 - evaluate score on whole dataset
Boundary Point Candidates

• Extract boundary for each primitive
• Candidates
 – sort neighbors into cones in tangent space
 – boundary candidates: at least two empty cones
 – [GWM01]: angle criterion

[GWM01: S. Gumhold, X. Wang, and R. MacLeod: Feature extraction from point clouds, In Proceedings 10th International Meshing Roundtable, 2001]
Boundary Curves I

• Cleaning
 – pruning
 – Moving Least Squares (MLS, [ABC*03])

• Topology initialization

• Loop extraction

• Prune small loops

Boundary Curves II

• Energy function
 – statistically motivated (Bayesian)
 \[p(M|D) = \frac{p(D|M)p(M)}{p(D)} \]

• Potentials
 – data fitting
 – Laplacian smoothness
 – consistency
Data Fitting

- Keep original boundary points
- Attraction to boundary points
Laplacian Smoothness

- Attraction to centroid of adjacent nodes
- Uniform sampling for free
- Shrinkage avoided by data fitting
- Not applied to corner points
Consistency Potential

- Consistency with primitive shape
- Consistency between adjacent primitives
- Tagging of boundary points
 - free
 - intersection
 - corner
Optimization

• Discard evidence term
• Transformation into -log-space
• Newton-Raphson line search
Triangulation

• Front growing
• Start within shape
• Stop at boundaries
• Run for each bounded region in each shape
Results - Synthetic
Results – Scanned Datasets
Parallel Publication

- Chen, Chen: Architectural Modeling from Sparsely Scanned Range Data, 2008

Conclusions

• Problem: reconstruction of structurally simple scenes with sharp features

• Idea
 – RANSAC primitive detection
 – Boundary extraction and optimization

Thank you for your attention!