Patch-Graph Reconstruction for Piecewise Smooth Surfaces

Philipp Jenke1, Michael Wand2, Wolfgang Straßer1

1 WSI/GRIS, University of Tuebingen, Germany
2 MPI Informatik, Saarbruecken, Germany
Motivation

• Surface reconstruction remains unsolved
• Nice solutions for smooth surfaces
• Hard problem at sharp creases
 – man-made objects
Bayesian Point Cloud Reconstruction

- Statistically motivated surface reconstruction approach
- Bayesian reasoning
 - data saliency + prior assumptions
- Feature preservation
 - curvature-based heuristic

[P. Jenke, M. Wand, M. Bokeloh, A. Schilling, W. Straßer: Bayesian Point Cloud Reconstruction, Eurographics `06, 2006]
Bayesian Point Cloud Reconstruction

- Limitations
 - Performance
 - optimization over surfel positions
 - Stability
 - global approach
 - feature detection heuristic

<table>
<thead>
<tr>
<th></th>
<th># Data points</th>
<th># Rec. points</th>
<th>Rec. time [sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box</td>
<td>2000</td>
<td>4506</td>
<td>28</td>
</tr>
<tr>
<td>Holes</td>
<td>4,790</td>
<td>31,717</td>
<td>271</td>
</tr>
<tr>
<td>Mechpart</td>
<td>9,521</td>
<td>104,578</td>
<td>1,759</td>
</tr>
<tr>
<td>Carved Object</td>
<td>9,973</td>
<td>41,911</td>
<td>269</td>
</tr>
<tr>
<td>Face</td>
<td>19,995</td>
<td>300,000</td>
<td>3,772</td>
</tr>
<tr>
<td>Fandisk</td>
<td>46,494</td>
<td>216,338</td>
<td>3,881</td>
</tr>
<tr>
<td>Floor</td>
<td>199,970</td>
<td>811,352</td>
<td>1,540</td>
</tr>
</tbody>
</table>

Table 1: Computation time and model complexity.
Data Structure

- **Surfel**
 - position
 - normal

- **Patch**
 - coordinate frame
 - normal + tangential directions
 - basis functions + coefficients

 \[
 f(u, v) = \sum_{i=1}^{\|B\|} c_i b_i(u, v)
 \]
 - subset of data points
Reconstruction Pipeline

- Noisy 3d data
- Initialization
- Segmentation
- Feature line extraction
- Meshing
Initialization

• Data preprocessing
 – normal estimation
 • Principle Component Analysis (PCA)
 – noise estimation

• Extraction of patches
 – resampling to ε-spacing
 – assembly of data points

• Topology graph
• Free parameters
 – basis function coefficients
• Bayes rule
 – likelihood
 • data points attract patch surface
 – priors
 • consistency potential
 • curvature penalty

\[
p(M|D) = \frac{p(D|M)p(M)}{p(D)}
\]
Optimization II

• Data fitting

• Consistency
 – between adjacent patches

• Curvature penalty
Segmentation I

• Invalid patches
 – data fitting is insufficient

• Patch segmentation
 – RANSAC (random sample consensus)
 • planes, spheres and cylinders

Segmentation II

- Patch subdivision
 - new coordinate systems
 - subset of assigned data points
- Topology graph update
Feature-/Border-Points

• Feature points
 – criterion: close disconnected patches
 – project patch centers to other patch

• Border points
 – later talk ...
Feature-/Border-Lines

- Estimate tangent direction (PCA)
- Assemble snakes
- Connect snakes with corners
- Smooth
Meshing

Mesh front growing

[J. Daniels, L. K. Ha, T. Ochotta, and C. T. Silva: *Robust smooth feature extraction from point clouds*, Proceedings Shape Modelling International (SMI ’07), 2007.]
Results

- Comparison to previous work

Results – Synthetic
Results – Scanner Data
Results - Timings

<table>
<thead>
<tr>
<th>Model/ #points</th>
<th>Init #patches</th>
<th>Segment/ #patches</th>
<th>Optimization</th>
<th>Features</th>
<th>Triangulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>carved o./20k</td>
<td>0.3s/156</td>
<td>3.8s/230</td>
<td>0.4s</td>
<td>0.1s</td>
<td>0.5s</td>
</tr>
<tr>
<td>block/100k</td>
<td>2.9s/604</td>
<td>22.2s/838</td>
<td>5.9s</td>
<td>1.6s</td>
<td>1.1s</td>
</tr>
<tr>
<td>joint/100k</td>
<td>3.4s/1706</td>
<td>17.1s/1962</td>
<td>10.7s</td>
<td>2.5s</td>
<td>2.6s</td>
</tr>
<tr>
<td>ra/200k</td>
<td>8.0s/1619</td>
<td>30.6s/1849</td>
<td>8.5s</td>
<td>6.0s</td>
<td>4.1s</td>
</tr>
<tr>
<td>elevator/120k</td>
<td>2.7s/668</td>
<td>52.8s/771</td>
<td>1.5s</td>
<td>6.3s</td>
<td>0.6s</td>
</tr>
</tbody>
</table>

[JWB*06]

<table>
<thead>
<tr>
<th>[our reconstruction]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Dataset</th>
<th># Data points</th>
<th># Rec. points</th>
<th>Rec. time [sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box</td>
<td>2000</td>
<td>4506</td>
<td>28</td>
</tr>
<tr>
<td>Holes</td>
<td>4,790</td>
<td>31,717</td>
<td>271</td>
</tr>
<tr>
<td>Mechpart</td>
<td>9,521</td>
<td>104,578</td>
<td>1,759</td>
</tr>
<tr>
<td>Carved Object</td>
<td>9,973</td>
<td>41,911</td>
<td>269</td>
</tr>
<tr>
<td>Face</td>
<td>19,995</td>
<td>300,000</td>
<td>3,772</td>
</tr>
<tr>
<td>Fandisk</td>
<td>46,494</td>
<td>216,338</td>
<td>3,881</td>
</tr>
<tr>
<td>Floor</td>
<td>199,970</td>
<td>811,352</td>
<td>1,540</td>
</tr>
</tbody>
</table>

Table 1: Computation time and model complexity.
Conclusions/Future Work

• Extension of *Bayesian Point Cloud Reconstruction*
 – patches instead of surfels
 – patch graph connectivity
 – RANSAC for segmentation

• Improvements
 – adaptive patch size

Thank you for your attention!