Robust Non-Local Denoising of Colored Depth Data

Benjamin Huhle, Timo Schairer, Philipp Jenke, Wolfgang Straßer

WSI/GRIS, University of Tübingen, Germany
Motivation

- high noise-level of time-of-flight cameras
- **denoising in 2D** domain:
 - additive noise in viewing direction
 - known neighborhood structure
 - techniques from image restoration
- two kinds of noise:
 - inaccuracies
 - outliers
Overview

- previous work
 - outlier detection
 - smoothing algorithms
- robust non-local denoising of depth data
 - outlier detection for unbiased smoothing
 - smoothing (new variant of NL-means)
 - integration of color-data
- results
Tensor Voting

- **outlier detection** in the tensor voting framework
 - surfaceness
 - curveness
 - junctionness

- initialization similar to PCA on nearest neighbors
- voting of neighbored tensors
- inverse of junctionness (\approx anisotropy of covariance)
Neighborhood Filters

Smith & Brady, 1995 / Tomasi & Manduchi, 1998

- bilateral filter:

 weight neighbors by distance in the range domain

 \[
 v'(i) = \frac{1}{Z_i} \sum_{j \in I} v(i) e^{-\frac{1}{\sigma_i^2} \|i-j\|^2} e^{-\frac{1}{\sigma_r^2} (v(i)-v(j))^2}
 \]

- influence function:

- cross/joint bilateral filter for multi-modal data
MRF-based Smoothing

• global optimization
• sum of potential functions:
 – data term
 – smoothing prior
• optimization difficult for non-convex potentials
• learned priors (*Fields of Experts*, Roth & Black, 2005)
MRF-based Smoothing

- global optimization
- sum of potential functions:
 - data term
 - smoothing prior
- optimization difficult for non-convex potentials
- learned priors (*Fields of Experts*, Roth & Black, 2005)
- image gradients can support features (edges):
 - super-resolution application (Diebel & Thrun)
Non-Local Means Filter (NL-Means)

- patch-based extension of the bilateral filter
 \[v'(i) = \sum_{j \in W_i} w(i, j)v(j) \]
- more robust similarity measure
 \[w(i, j) = \frac{1}{Z_i} e^{-\frac{1}{h^2} \sum_{k \in N} G_{\alpha}(\|k\|_2)(v(i+k)-v(j+k))^2} \]
- related to texture synthesis (Efros & Leung, 1999)
- conserves repetitive fine detail structures
our approach

ROBUST NON-LOCAL DENOISING OF COLORED DEPTH DATA
Outlier Detection in the NL-Framework

- **NL-means:**
 - estimator of pixel value given its surrounding

 \[p(v(i)|\{v(i + k)\}_{k \in \mathbb{N}}) \]

- **Idea:**
 - detect abnormalities (outliers) using this estimate
 - iterative algorithm (generalized EM), assuming

 \[p_{mix}(v(i)|v(N_i^*)) = \alpha p_{inlier}(v(i)|v(N_i^*)) + p_{outlier}(v(i)|v(N_i^*)) \]
Smoothing with NL-Means

- artifacts on smooth surfaces near strong edges

- no smoothing perpendicular to near edges

- dilemma: big patches/smoothing near edges
A new variant of NL-Means

- intra-patch similarity:
 - additional weights

\[\xi_{ik} = e^{-\frac{(v(i) - v(i+k))^2}{h}} \]

- distinguish distant regions (different surfaces)
Integration of Color-Data

- analog to joint bilateral filter (e.g. Kopf et al., 2007)
- make use of statistical dependence when estimating

\[p(v(i)|\{v(i+k)\}_{k\in\mathbb{N}}) \]

- introducing additional weighting term

\[v'_{uv}(i) = \sum_{j\in W_i} w(i,j) w^{(u)}(i,j) v(j) \]
Results: Our Setup

- time-of-flight camera PMD Vision 19k
 - 120x160 pixels, laterally calibrated
 - additional color camera

- GPU implementation:
 - CUDA on NVidia GeForce 8800GTX
 - 17x17 window, 7x7 patches
 - 10 iterations
 - 1.9 sec/frame
Results: Outlier Detection

tensor voting

our approach
Results: Raw Input Data
Results: MRF-based Smoothing
Results: Joint Bilateral Smoothing
Results: Robust Non-Local Denoising
Results: Joint Bilateral, Detail View
Results: Robust NL, Detail View
Method Noise

- difference image (before/after denoising)

joint bilateral filter robust NL
Conclusion

• new depth map denoising based on image restoration technique:

 Robust Non-Local Denoising
 – outlier detection for unbiased smoothing
 – intra-patch similarity for strong discontinuities
 – integration of color

• parallelized implementation
Thanks for your attention!